20,000 research outputs found

    Compressive sampling for accelerometer signals in structural health monitoring

    Get PDF
    In structural health monitoring (SHM) of civil structures, data compression is often needed to reduce the cost of data transfer and storage, because of the large volumes of sensor data generated from the monitoring system. The traditional framework for data compression is to first sample the full signal and, then to compress it. Recently, a new data compression method named compressive sampling (CS) that can acquire the data directly in compressed form by using special sensors has been presented. In this article, the potential of CS for data compression of vibration data is investigated using simulation of the CS sensor algorithm. For reconstruction of the signal, both wavelet and Fourier orthogonal bases are examined. The acceleration data collected from the SHM system of Shandong Binzhou Yellow River Highway Bridge is used to analyze the data compression ability of CS. For comparison, both the wavelet-based and Huffman coding methods are employed to compress the data. The results show that the values of compression ratios achieved using CS are not high, because the vibration data used in SHM of civil structures are not naturally sparse in the chosen bases

    Triton-3He relative and differential flows and the high density behavior of nuclear symmetry energy

    Full text link
    Using a transport model coupled with a phase-space coalescence after-burner we study the triton-3He relative and differential transverse flows in semi-central 132Sn+124Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton-3He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-3He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.Comment: 6 pages, 2 figures, Proceeding of The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energ

    Ultrafast initialization and QND-readout of a spin qubit via control of nanodot-vacuum coupling

    Full text link
    Ultrafast initialization enables fault-tolerant processing of quantum information while QND readout enables scalable quantum computation. By spatially assembling photon resonators and wave-guides around an n-doped nanodot and by temporally designing optical pump pulses, an efficient quantum pathway can be established from an electron spin to a charged exciton to a cavity photon and finally to a flying photon in the waveguide. Such control of vacuum-nanodot coupling can be exploited for ultrafast initialization and QND readout of the spin, which are particularly compatible with the optically driven spin quantum computers.Comment: 4 pages 3 figure

    Quantum control of electron--phonon scatterings in artificial atoms

    Full text link
    The phonon-induced dephasing dynamics in optically excited semiconductor quantum dots is studied within the frameworks of the independent Boson model and optimal control. We show that appropriate tailoring of laser pulses allows a complete control of the optical excitation despite the phonon dephasing, a finding in marked contrast to other environment couplings.Comment: to appear in Phys. Rev. Let

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation

    Get PDF
    Background: Gastrulation is a key transition in embryogenesis; it requires self-organized cellular coordination, which has to be both robust to allow efficient development and plastic to provide adaptability. Despite the conservation of gastrulation as a key event in Metazoan embryogenesis, the morphogenetic mechanisms of self-organization (how global order or coordination can arise from local interactions) are poorly understood. Results: We report a modular structure of cell internalization in Caenorhabditis elegans gastrulation that reveals mechanisms of self-organization. Cells that internalize during gastrulation show apical contractile flows, which are correlated with centripetal extensions from surrounding cells. These extensions converge to seal over the internalizing cells in the form of rosettes. This process represents a distinct mode of monolayer remodeling, with gradual extrusion of the internalizing cells and simultaneous tissue closure without an actin purse-string. We further report that this self-organizing module can adapt to severe topological alterations, providing evidence of scalability and plasticity of actomyosin-based patterning. Finally, we show that globally, the surface cell layer undergoes coplanar division to thin out and spread over the internalizing mass, which resembles epiboly. Conclusions: The combination of coplanar division-based spreading and recurrent local modules for piecemeal internalization constitutes a system-level solution of gradual volume rearrangement under spatial constraint. Our results suggest that the mode of C. elegans gastrulation can be unified with the general notions of monolayer remodeling and with distinct cellular mechanisms of actomyosin-based morphogenesis

    Theory of control of spin/photon interface for quantum networks

    Full text link
    A cavity coupling a charged nanodot and a fiber can act as a quantum interface, through which a stationary spin qubit and a flying photon qubit can be inter-converted via cavity-assisted Raman process. This Raman process can be controlled to generate or annihilate an arbitrarily shaped single-photon wavepacket by pulse-shaping the controlling laser field. This quantum interface forms the basis for many essential functions of a quantum network, including sending, receiving, transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape and average photon number. Numerical study of noise effects on the operations shows high fidelity.Comment: 4 pages, 2 figure

    Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow

    Full text link
    In this paper, we prove the energy diminishing of a normalized gradient flow which provides a mathematical justification of the imaginary time method used in physical literatures to compute the ground state solution of Bose-Einstein condensates (BEC). We also investigate the energy diminishing property for the discretization of the normalized gradient flow. Two numerical methods are proposed for such discretizations: one is the backward Euler centered finite difference (BEFD), the other one is an explicit time-splitting sine-spectral (TSSP) method. Energy diminishing for BEFD and TSSP for linear case, and monotonicity for BEFD for both linear and nonlinear cases are proven. Comparison between the two methods and existing methods, e.g. Crank-Nicolson finite difference (CNFD) or forward Euler finite difference (FEFD), shows that BEFD and TSSP are much better in terms of preserving energy diminishing property of the normalized gradient flow. Numerical results in 1d, 2d and 3d with magnetic trap confinement potential, as well as a potential of a stirrer corresponding to a far-blue detuned Gaussian laser beam are reported to demonstrate the effectiveness of BEFD and TSSP methods. Furthermore we observe that the normalized gradient flow can also be applied directly to compute the first excited state solution in BEC when the initial data is chosen as an odd function.Comment: 28 pages, 6 figure

    Improved Simulation of the Mass Charging for ASTROD I

    Full text link
    The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices I) mission can affect the quality of the science data as a result of spurious Coulomb and Lorentz forces. To estimate the size of the resultant disturbances, credible predictions of charging rates and the charging noise are required. Using the GEANT4 software toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons and alpha particles (3He, 4He) in the space environment. A positive charging rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at solar maximum. Based on this charging rate and factoring in the contribution of minor cosmic-ray components, we calculate the acceleration noise and stiffness associated with charging. We conclude that the acceleration noise arising from Coulomb and Lorentz effects are well below the ASTROD I acceleration noise limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier components due to charging are investigated, it needs to be studied carefully in order to ensure that these do not compromise the quality of science data in the ASTROD I mission.Comment: 20 pages, 14 figures, submitted to International Journal of Modern Physics
    corecore